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SUMMARY 
A description is given of a high-order solution algorithm for the solution of the unsteady axisymmetric 
Navier-Stokes equations. The method consists of a combination of fourth-order and second-order accurate 
finite difference schemes, where the approximated equations are solved by an alternating direction implicit 
(ADI) method. Special attention is paid to the boundary conditions. Results are compared with measure- 
ments for the cases of rotating flow within a closed cylinder (rotating driven cavity), developing axial flow in a 
stationary pipe and developing flow in a rotating pipe. 
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1. INTRODUCTION 

The simulation of rotating fluid flows has many important applications in nature as well as in 
industrial environments. To obtain a closer understanding of the various fluid dynamical 
processes underlying rotating flows, we present here an accurate numerical method aimed at  the 
study of transitional and turbulent flows by direct simulations of the unsteady, axisymmetric 
Navier-Stokes equations. 

The method which has been developed at Laboratoire d’Informatique pour la Mecanique et les 
Sciences de 1’Ingenieur (LIMSI) has in various cases been shown to accurately predict two- 
dimensional flows (see e.g. References 1-3). 

The extension of the method to axisymmetric flows is based on a $+r 
(streamfunction-vorticity-circulation) formulation and, as in the two-dimensional case, takes 
advantage of a combination of finite difference schemes of order 0(h4) and o(hz) solved by an 
efficient AD1 algorithm. 

Owing to the high accuracy of the method, special attention is paid to the formulation of stable 
boundary conditions. 

In the present work results will be shown for the following cases: 

(1) rotating flow in a cylindrical vessel initiated by a rotating cover (rotating cavity flow) 
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(2) developing, non-rotating flow in a stationary pipe 
(3) developing flow in a rotating pipe. 

Whenever possible, the results obtained will be compared with experimental observations. 

2. FORMULATION OF THE GOVERNING EQUATIONS 

Assuming axial symmetry and incompressible flow conditions, in terms of cylindrical coordinates 
(r*, 8*, z*) with corresponding velocity components (u*,  u*, w*) the momentum equations and the 
equation of continuity may be written as 

+--+--- (1) -+u*p+w*p--= ---+v ~ 

au* au* au* u*2 1 ap* (a%* 1 au* a+ 
at* dr* az* r* p ar* ar*2 r* ar* az*2 

(3) 

(4) 

aw* aw* aw* 1 ap* (a iw* 1 aw* 
-+u*-+w*-= ---+v __ +--+- 
at* ar* az* p a z *  ar*2 r* ar* az*2 ’ 

a(u*r*) a(w*r*) 
ar* az* 

+- = 0, 

where p* denotes the pressure, t* the time variable, v the kinematic viscosity and p the fluid 
density. Furthermore, we introduce a local circulation r* and in the r* - z* plane a streamfunc- 
tion +* and a vorticity o* as follows: 

r* = r*v*, (5)  

a+*/az* =r*u*, (6)  

a+*/ar* = - r*w*, (7) 

Introducing a characteristic length 
dimensionless as 

r = r*/6*, 

u = U*/W*,  

O* = au*/az* - aw*/ar*. (8) 
6* and a characteristic velocity W*, the variables are made 

z = z*/6*, 

2) = u*/w*, 

t = t***/6*, 

w = w*/w*, (9) 
+ = J/* / ~ * 6 * 2 ,  = @*2j*/w*, r = r*/d*w*. 

In order to stretch the net and eventually extend it to infinity in the r-direction, we introduce a 
transformation as 

Y = Y(r) (10) 
Comparing equations (1)-(10) and formally replacing z by x, the governing equations are now 

written as 
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where 

(14) 

3. NUMERICAL METHOD 

The transformed Navier-Stokes equations defined by (1 1)-(15) consist of two definition equations 
for the velocities u and w, a Poisson equation for the streamfunction $, a momentum equation for 
the circulation r and a momentum equation for the velocity o. The solution of these equations is 
accomplished by employing a finite difference approximation in combination with an alternating 
direction implicit (ADI) te~hnique ,~  where a fourth-order accurate discretization is utilized for the 
solution of the velocities and the streamfunction, and a second-order accurate one is utilized for 
the circulation and the vorticity. The time derivatives are everywhere discretized by first-order 
accurate formulae. 

3.1. Solution procedure of the Poisson equation 

point Hermitian-formulae is employed. The formulae take the form (see e.g. Reference 5 or 6)  
To solve the +-equation with fourth-order accuracy, a compact formulation based on three- 

where h denotes,the mesh size, subscript ‘i’ refers to the point being calculated, and ( )’ and ( )” 
denote first derivative and second derivative respectively. 

Solving equations (19) and (20) in combination with the governing equation for the variable F 
(in our case + of equation (13)) assures fourth-order accuracy at the expense of two additional 
variables F’ and F being introduced. The advantage of this method is that, for a given accuracy, 
the fourth-order scheme makes it possible to diminish the number of grid points in comparison 
with methods of lower order. The expense, however, is that two additional equations with two 
additional variables have to be solved. In our case equations (19) and (20) are solved together with 
the equations for u, w and +, equations (11H13).  

To optimize the solution procedure, an AD1 algorithm of the Peaceman-Rachford type is 
utilized when solving equation (1 3). As shown by Wachpress,’ this algorithm is most effectively 
employed when going through 2N iterations at each time step, where N in our case takes the value 
2 or 3. 
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Letting the first semi-step at the local iteration step k be in the y-direction, the resulting system 
of equations reads 

where i., is introduced in order to optimize the convergence.' Here superscript 'n'denotes the time 
step and the discretization in the x- and y-direction is given by the subscripts i =  1,2, . . . , N X  and 
j =  I ,  2, . . . , N Y respectively. 

The unknown ( C ? ~ $ / C ? ~ ~ ) ; ; ; ' ~ "  is eliminated by combining equations (21) and (23) ,  and the 
solution of *:;! + and (&+h/i?y)$+'/' is accomplished by solving the resulting 2 x 2 block- 
tridiagonal system of equations by a factorization method. The solution of the second semi-step is 
accomplished in a similar way by taking the derivatives in the x-direction as unknowns and 
solving equation (13) in combination with equation ( 2 3 )  for I&;+'. As a result of the solution 
procedure, the derivatives of $ are determined directly; therefore the velocities are calculated 
straightforwardly from the definition equations ( 1  1 )  and (12). 

3.2.  Solution procedure of the momentum equations 

of equations (14) and (15), a two-step Peaceman-Rachford4 algorithm is 
utilized in combination with a second-order finite difference scheme. In some cases it may be 
convenient to reduce the accuracy to obtain stable solutions. This is accomplished here by using 
an alternating 'plus/minus' upwind discretization of the convective terms, thus assuring diagonal 
dominance without destroying the accuracy too much. Letting the first semi-step be in the 
y-direction, the r-equation is written as 

To calculate o and 

. r ? .  
= -Re [(I -pij)6; +pijs;~(q,jr;,j)+(i -.xij)x 1.1.)  + a:xr;,j, ( 'i 

where Ar defines the explicit time step. 

lJ  I 0 for u;,~ < O  

Putting aij= 1/2 and /Iij= 1/2 defines central differences, and letting 

1 for u;.~>,O 1 for g j 2 0  and pij= { 
0 for w $ , ~ < O  

r..= 

determines the upwind discretization. 
The upwinding parameters are defined as 

s;( )i.j=C( ) i , j +  1 -( ) i , j l / A ~ ,  

A;( ) i . j = C (  ) i , j - (  )i,j-Il/AY, 
and 6, and 6,, denote the usual central difference operators. 
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Correcting the upwinded terms by the alternating discretization, the second semi-step in the 
x-direction is written as 

A similar procedure is employed when solving equation (15) for the vorticity w. 

4. TEST CASES AND EVALUATION OF BOUNDARY CONDITIONS 

The high-order scheme introduced in the previous section is unconditionally stable. To maintain 
this property it is essential to derive a set of stable boundary conditions which do not destroy the 
order of the overall flow problem. In this section a number of different boundary conditions will be 
tested on some selected flow problems. 

Common to all the cases treated is the symmetry condition along the line y = 0. Denoting points 
located on this line by j =  1 and neighbouring points b y j =  2 inside the flow domain and j =  -2  
outside the flow domain, the symmetry conditions may be written as 

where equation (26c) reflects the fact that $(y)  is an even function about the symmetry line. 

satisfied whereas equation (20) yields the relation 
Evaluating the Hermitian formulae (19) and (20), it is easily seen that equation (19) is identically 

Substituting equation (27) into the Hermitian formulae a s j  = 2, the resulting fourth-order accurate 
boundary condition may be written as 

When solving the Poisson equation along a line x=constant, this equation replaces equation (23) 
at the first point after the symmetry line. The axial velocity may be found from the definition 
equation (12): 

4.1. Rotating flow in a closed circular cylinder 

To study the behaviour under no-slip conditions, we analyse here the influence of the boundary 
conditions on the solution of a rotating flow in a closed cylindrical container with a circular cross- 
section. The circulation of the flow is created by letting the cover rotate, as shown in Figure 1. 
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Figure I .  Geometry of the cylinder 

This case is particularly interesting because of its simple geometry and because it may exhibit a 
large variety of different flow structures, depending on the aspect ratio (height to radius) and 
Reynolds number. For example, at the centreline, axial stagnation points and separation bubbles, 
which can be interpreted as vortex breakdown, may occur. 

The configuration has been the subject of many experimental and numerical investigations. 
Escudier* made some visualizations of flow structures at different aspect ratios and Reynolds 
numbers and showed that up to three isolated recirculating bubbles may be created at the 
symmetry line. Michelsen’ made detailed LDA measurements of the velocity distribution in a 
container with aspect ratio 1.0 and Reynolds number 1800 in order to test his axisymmetric finite 
element code. 

Denoting the height of the cylinder as H ,  the radius as R and letting it rotate with rotational 
speed Q, the variables are made dimensionless by introducing the characteristic quantities 

\U* = R R ,  6* = R .  

Thus the Reynolds number is given as R e = Q R 2 / v ,  and xe[O, H / R ]  and ye[O, 13.  
At all boundaries we have no-slip conditions: 

x=O: u=w=$=d$/2~=0, r=r2, (30a) 

x = H / R : u  = w = $ = 2$/c?x = = 0, (30b) 

y =  1: = = $ = a$/ay = r = 0. (304 
To determine the conditions for the vorticity and the second derivatives of the streamfunction, 

we employ the relations 

o r  = d2$ /2x2  at x = constant boundaries, (31) 
Lor =jZ(i?’$/2yz) at y = constant boundaries, (32) 

and perform a Taylor expansion from the boundary considered into the flow domain. Taking for 
example the boundary x=O, we get 
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Neglecting the third-order derivative, a first-order boundary condition for the second-order 
derivative of the streamfunction may be established as follows: 

In order to obtain a second-order boundary condition, we make an additional Taylor expansion 

Multiplying equation (33) by 8 and subtracting it from equation (35) eliminatks the third-order 
derivative to give the general formula 

Equations (34) and (36) define Dirichlet conditions for both the Poisson equation and, 
employing the relation (31), the vorticity momentum equation. 

The last boundary condition to be tested is a second-order accurate one for the vorticity, which 
is obtained by approximating the third-order derivative of equation (33) by a two-point, one-sided 
discretization. Replacing second-order derivatives of the streamfunction by w, according to 
equation (31), we get 

Thus we have here a Neumann condition for the vorticity which is employed directly in 
the momentum equation. The second-order derivative of the streamfunction is found from 
equation (31). 

The first case to be calculated consists of a cylinder with aspect ratio H / R = 2  and Reynolds 
number Re= 1854. This particular case has been chosen because it corresponds to one of the flow 
cases visualized by Escudier' and has recently been calculated by Lugt and Abboud." 

To determine the number of grid points necessary to obtain grid-independent solutions, a series 
of calculations with different space discretization have been performed. The outcome of this study 
is shown in Figure 2, where the axial velocity distribution along the symmetry line is shown for 
different grid sizes. Note here that the main flow along the symmetry line is in the opposite 
direction to the coordinate axis; hence positive velocities define recirculating flow conditions. It is 
seen here that all the solutions except the coarsest (51 x 51) case show the same trends, and it was 
found that in order to obtain solutions within acceptable accuracy, a discretization of 91 x 71 was 
sufficient. In the following a discretization of 101 x 71 grid points will be employed. 

The influence of the boundary conditions is shown in Figure 3, where time histories of the axial 
velocity component of a point located at the symmetry line at approximately x = 0 8  have been 
compared for different boundary conditions. It is seen here that the two second-order accurate 
boundary conditions give time histories which are in close agreement with each other, whereas the 
history of the first-order condition exhibits a delaying effect in time and ends with a stationary 
value which is different from the other two. It is likely here that this difference can be attributed to 
the closed, wall-driven configuration of the flow domain. Thus if any error or perturbation is 
imposed on one of the boundaries, it will, owing to the convection along the walls, be transported 
to all the other boundaries, including the boundary defining the axis of symmetry, in the 
calculation domain. 
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Figure 2. Influence of grid size on axial velocity at symmetry line: -, 111 x71; ---, 101 x71; ...., 91 x71; 
-..-, 71 x 51; +, 51 x 51 

- .8008-01L 

Figure 3 .  Influence of boundary conditions on axial velocity: -, second-order, equation (36); - - -, second-order, 
equation (37); * *  * * ,  first-order, equation (34) 
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The time discretization is related to the x-spacing by At = CAx, where the constant C is limited 
by the CFL condition. Trying different values of C for the present example, it was found that when 
utilizing second-order accurate boundary conditions, stable solutions could be obtainable for 
C I 15, whereas solutions for the first-order accurate conditions were obtained for C ~ 3 0 .  If higher 
values of C were employed, the behaviour of the solution history clearly signalled the CFL 
condition being violated. This is illustrated in Figure 4, where the solution history subject to the 
boundary condition (37) is shown for C-values 5,10,15 and 20. For C< 15 the solution is almost 
independent of the time discretization, whereas C = 20 results in a clearly unphysical solution 
history subject to large-amplitude oscillations which quickly grow bigger than the representation 
of the machine. 

Figure 5 shows lines of constant I) at different times after the start of the cover rotation. It is seen 
that the fluid motion in the beginning is initiated at the corner (x, y)=(O, l), from which it 
penetrates the cylinder. Along the rotating cover is shown the development of an Ekman layer and 
along the lateral boundary of the cylinder is shown the evolving Stewartson layer. 

Following the evolution of fluid motion in time, at t=50 the streamlines are seen to be 
monotonic, after which an undulating shape slowly appears. At about t = 100 a small bubble with 
recirculating flow appears on the axis of symmetry. This bubble quickly grows and at t = 110 it has 
evolved into two distinct bubbles. In the transient phase these two bubbles are seen to coalesce in a 
cyclic manner into a coherent mushroom-shaped structure. A steady state is reached at about 
t = 350 where the final structure consists of a large counter-rotating bubble followed immediately 
downstream by a smaller one. 

- .1e00-01- 

- .2ode-01- 

- .Sme-01- 

-.4mb-01- 

- .--01- 

-.BeBS-01- 

Figure 4. Influence of time step on axial velocity: -, C=5; ---, C=lQ - - * - ,  C=15; * - a * ,  C=20 
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Figure 5. Time series of streamfunction; aspect ratio H/R=2.0, Re= 1854 

The steady state solution is compared in Figure 6 with the visualization of Escudier.8 In general 
the visualization and the calculation are in good agreement; however, the onset of the stagnation 
point of the large bubble differs by an amount of about 3% of the cylinder height. 

Another calculation was made for a cylinder with aspect ratio H / R  = 1.0 rotating at a Reynolds 
number of 1800. This case has been experimentally investigated by Michelseng using an LDA 
technique to determine velocity distributions. Figures 7 and 8 show tangential and radial velocity 
distributions respectively along y = constant lines. In general the calculations are seen to be in 
excellent agreement with the measurements over most of the flow field; however, owing to the 
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d 1854 

Figure 6. Comparison of calculated streamlines with visualization of Escudier;* aspect ratio H / R  = 2.0, Re = 1854 
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Figure 7. Rotational velocity profiles along y=constant lines: 0,  experiment^;^ -, calculations 
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Figure 8. Radial velocity profiles along y = constant lines: 0, experiments;' -, calculations 

boundary layer near the boundaries, some deviations may be found. It is reasonable to assume 
that a finer discretization of the grid near the boundaries will circumvent this deviation. 

4.2. Axial flow developing in a stationary pipe 

To study the influence of inflow and outflow boundary conditions on a swirl-free flow, we 
perform a calculation of a flow developing in a pipe with constant cross-section. At the entrance of 
the pipe the axial velocity distribution is assumed uniform, after which, under the influence of 
viscous forces, it gradually becomes parabolic. Measurements of this case have been performed by 
J. Nikuradse and are reproduced by Schlichting.' 

Introducing the initial axial velocity at the entrance, wo, as the characteristic velocity and the 
radius of the pipe, R ,  as the characteristic length, the Reynolds number is defined as Re = Rw,/v 
and the inflow conditions are given as 

x = o  r=o, w = i ,  II/= -- i Y 2 .  (38) 
To derive the remaining inflow conditions, we have to make some assumptions which may not 

necessarily be in accordance with the actual behaviour of the flow. Taking for example u = O  
implies, owing to the equation of continuity, that awlax =0, which puts an unphysical constraint 
on the incoming flow. A better approximation is obtained by letting the radial velocity be a result 
of the calculation. This can be done by imposing the Neumann condition du/dx=O, which 
corresponds to assuming zero vorticity at the entrance. Since this implies that amjar = O  all over 
the inflow plane, an estimate of the error introduced may be derived by evaluation of equation (4) 
and (8) .  This results in the condition d2w/ax2 =O; thus the introduced error is found to be of second 
order. In this case the remaining boundary conditions on the entrance are written as 

w = au/ax = az$/ax* = 0, (39) 
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from which the radial velocity is obtained by performing a Taylor expansion in the flow domain: 

(40) 
At a finite distance downstream from the entrance, the velocity distribution becomes fully 

developed and an outflow condition is defined by putting derivatives with respect to x equal to 
zero: 

~1 , j  = ($2. j - $ 1 ,  j ) /Axr j  + oC(A~)~I* 

where L denotes the length of the pipe and the Neumann conditions a( )/ax are approximated by 
the relation ( ) N X , j - (  )NX- , , j = O .  After having determined the axial velocity and the vorticity, the 
second derivative of the streamfunction is updated by employing equation (13), and the 
streamfunction is determined by employing a third-order Taylor expansion in the x-direction. 

At the lateral boundary y =  1 we employ the same boundary conditions as in the previous test 
example, i.e. those given by equations (~OC) ,  (32) and (36). 

According to measurements and approximate analytical studies,' the length necessary to make 
the flow fully developed is uniquely determined by the ratio x/Re. Consequently the flow becomes 
fully developed only if the channel is sufficiently long or if the Reynolds number is comparatively 
small. 

In the present calculation we put L = 5 R  and Re=20, which assures that the flow is fully 
developed at the outflow boundary. 

The influence of the node spacing is examined by trying different values of N X  and NY.  This is 
shown in Figure 9, where the axial velocity distribution at the axis of symmetry is compared for 

.*- Y .  

.ooap*0a .--01 .1laa8.elil .lSae*faa .aUaa*m .zsDB*0a 

Figure 9. Influence of grid size on axial velocity at symmetry line: - * - - ,  31 x 21; * e m . ,  31 x 31; ---, 61 x 31; -, 61 x 61 



1530 J. N. S0RENSEN AND TA PHUOC LOC 

N X  x N Y  values 31 x 21, 31 x 31, 61 x 31 and 61 x 61. The results show that a node spacing of 
31 x 31 is sufficient to accurately determine the considered velocity distribution. 

The sensitivity to the inflow conditions is tested by comparing the second-order accurate 
conditions defined by equation (39) and (40) with the first-order accurate ones given by assuming 
u = 0 all over the inflow plane. In the latter case equation (39) is replaced by letting the vorticity be 
determined by the Taylor expansion 

The outcome of this study is shown in Figure 10, where the resulting distributions of axial velocity 
along the symmetry line are compared with the measurements of J. Nikuradse (Reference 11, 
Chap. XI, Figure 11.8). It is seen here that the condition defined by equations (39) and (40) is in 
much better agreement with the measurements than the one given by equation (42), since the latter 
immediately downstream of the entrance plane tends to make w constant in a way which does not 
correspond to the measured behaviour of the flow. 

Employing the inflow conditions (39) and (40), a complete comparison between measurements 
and calculations is shown in Figure 11,  where axial velocity distributions at different y =constant 
lines are shown as function of the parameter x/Re. It is seen here that the calculations over most of 
the pipe are in good agreement with the experimental values. In the immediate neighbourhood of 
the entrance, however, some discrepancies are seen. These are probably connected with the 
problem of defining appropriate inflow conditions. 

In order to derive some more general outflow conditions, we employ the present configuration 
to test three different formulations for the boundary condition. Common to them all is that we 
parabolize the vorticity equation at the outflow. This is accomplished by setting the second x- 
derivative of the vorticity equal to zero and results in the following expression: 

Employing a three-point leap-frog-like discretization in time, we approximate equation (43) by 
the general formula 

from which the updated vorticity m;;,: is derived explicitly. 
The first boundary condition is defined by assuming fully developed axial flow: 

awlax = = a+/ax = 0. (45) 
Combining equation (45) with equations (8), (1 1 )  and (1 3) and employing second-order accurate 
approximations, the remaining variables are expressed as follows: 

w N X , j = w N X - l , j ?  (464 
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Figure 10. Influence of inflow conditions on axial velocity at symmetry line: 0, measured" -, du/dx =O; ---, u=O 
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Figure 11.  Axial velocity profiles along y = constant lines: 0, experiments;" -, calculations 
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The other outflow conditions are given by assuming the radial flow be fully developed: 
&/ax = a 2 $ / a X 2  = 0. (47) 

In this case the streamfunction can be obtained either directly from equation (47) by employing a 
Taylor expansion or from equation (1 3), which then defines a two-point boundary value problem 
along the outflow boundary. To see whether the two formulations produce any difference in the 
results obtained, both will be considered in the following. 

The first formulation is obtained directly from a Taylor expansion: 

$ N X , j = 2 $ N X - l , j - ~ N X - 2 , j .  (48) 

Employing second-order accurate central differences, the second formulation is given by the 
solution of equation (1 3): 

j=2,  3 , .  . . , N Y - 1 ,  (49) 

For both formulations the velocities are determined from the following discretization formulae: 
subject to the boundary conditions $NX,NY = - 112. 

uNX, j=uNX-  l , j?  (504 

wN X, j = -h($ NX,j  + 1 - $ NX, j - l)/2AYrj. (50b) 
To prevent oscillations, we update the outflow variables by averaging between the old values 

and the newly calculated ones; thus for all the cases considered we update by employing the 
following relaxation formula: 

Now, to summarize, the three outflow conditions to be tested are as follows: 

condition A: fully developed axial flow, equations (44) and (46aH46c) 
condition B fully developed radial flow, equations (44), (48), (50a) and (50b) 
condition C fully developed radial flow, equations (44), (49), (50a) and (50b) 

The test is performed by moving the outflow boundary upstream and evaluating the influence of 
this on the flow upstream of the new outflow boundary. 

In Figure 12 the outflow boundary is imposed at L = R (corresponding to L = 005Re)  and for 
the three outflow conditions axial velocity distributions along the co-ordinate lines y = O  and 
y=O.9 are compared with the original distribution. All three conditions are seen to have an 
upstream influence corresponding to about half the length of the calculation domain. Further- 
more, it is seen that the condition of fully developed radial flow (condition B or C )  disturbs the 
upstream flow less than the assumption of fully developed axial flow (condition A). The difference 
between the two conditions of fully developed radial outflow is barely seen, but condition C seems 
to be in better agreement with the original distribution than condition B. 

Moving the outflow boundary further upstream to L = R/2 makes these tendencies clearer, as 
shown in Figure 13. Thus evaluating the axial velocity at a point defined by the intersection of the 
downstream boundary with the axis of symmetry, compared with an original value of 1.45, 
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condition A results in a value of 1.2, condition B predicts a value of 1.65 and condition C gives a 
value of 1.55. 

Comparing the axial velocity distributions in Figure 13, it is seen that all the imposed outflow 
conditions have an upstream influence which is now perceptible all over the flow domain. It is also 
seen that the trend manifested near the outflow boundary holds generally in the fluid domain; thus 
the distributions predicted by condition C are everywhere in better accordance with the 
undisturbed distributions than those predicted by condition B, which, on the other hand, predicts 
better results than condition A. 

4.3. DeuelopingJlow in a rotating pipe 

To study the influence of outflow boundary conditions on a rotating flow, we here present some 
calculations of a flow developing in a rotating pipe. As before, we let the inflow be defined by a 
uniform axial velocity wo and, furthermore, we let the pipe rotate with rotational speed a. 
Assuming fully developed circulation at the outflow boundary, the additional boundary con- 
ditions for the circulation are given as follows: 

X = O  r=o, (524 

= L/R: ar iax  = 0, (52b) 

y=o: rEo, (52c) 

y= 1: = RQ/wo, 

where, as before, all variables have been non-dimensionalized with wo and R. 
In the present calculation we put Q= wo/R and Re= 100. 
In the case of the non-rotating pipe, it was found that a length of x/Re=0.25 was sufficient to 

assure fully developed axial flow. In the present case, trying different pipe lengths, it was found that 
a value of x/Re='0.5 was necessary to assure the rotational velocity to be fully developed at 
outflow. Thus we now limit the calculation domain by y = l  and x=L/R=50, for which a 
discretization of 40 points in the y-direction and 500 in the x-direction was employed. 

Figure 14 shows tangential velocity distributions at different y =constant positions as a 
function of the axial co-ordinate parameter x/Re. Since the interaction between swirl and axial 
velocities is essentially non-linear in character, it is not possible to obtain an analytical solution 
and the authors are not aware of any experiments that may verify the results obtained. However, it 
is seen that the theoretical tangential velocity distribution u = y is approached when the outflow 
boundary is reached. 

As in the non-rotating case, we again analyse the influence of outflow conditions by moving the 
outflow boundary upstream. The boundary conditions to be tested are the same as before 
(conditions A, B and C of the Section 4.2), but they are now combined with the condition of fully 
developed circulation. 

Imposing the outflow conditions at an axial position L =0005Re, we compare the calculated 
tangential velocity distributions with the original distribution. The result of this is shown in Figure 
15, where tangential velocity distributions as a function of axial position are shown along .the 
coordinate lines y=0.8 and y=0.9. 

It is seen here that, in comparison to the non-rotating case, the rotation does not seem to have 
any appreciable influence on the behaviour of the boundary conditions employed. Thus, although 
not very different from the distribution of condition B, condition C results in a velocity 
distribution which is closer to the original one than the other two conditions and it is seen that 
when moving the boundary conditions upstream the flow is disturbed within a distance which is 
approximately the same for the three boundary conditions considered. 



Figure 

HIGH-ORDER AXISYMMETRIC NAVIER-STOKES CODE 

v (-1 
I .o 

0.8 

0.6 

0.4 

0.2 

0.0 - ' I 1 1 1 1 1 1 J 
0.10 0.20 0.30 0.40 0.50 0.0 

z l R e  (-1 
14. Rotational velocity profiles along y=constant lines for swirl flow developing in rotating pipe 

0.60 

0.50 

0.40 

0.30 

0.20 

0.10 

0 .o 

y 4 . 9  

y 4 . 8  

0.0 0.10 0.20 0.30 0.40 0.50 

z/Rex102 (-) 

1535 

Figure 15. Influence of outflow conditions on axial velocity distributions for flow developing in rotating pipe: 
-, undisturbed; -.*-, condition A; -*-,condition B; ---, condition C 



1536 J. N. SBRENSEN AND TA PHUOC LOC 

5. CONCLUSIONS 

In this paper a high-order finite difference solution procedure for the axisyrnmetric Navier-Stokes 
equations has been presented. 

Comparison of calculated results with experiments confirms the efficiency of the high-order 
numerical scheme. Thus, for both the flow driven by a rotating cover in a circular container and 
developing axial flow in a pipe, the presented results are generally in excellent agreement with 
measured as well as visualized data. 

A study of the influence of boundary conditions on solid walls revealed that significant 
differences may be obtained when comparing results from first-order conditions with results from 
second-order conditions. Consequently, although the use of first-order conditions results in better 
stability conditions with faster convergence, it is not recommended to employ conditions of order 
less than two since the error introduced may be too high. 

To study the influence of open flow boundary conditions in axisymmetric configurations, 
calculations for different inflow and outflow conditions have been performed for developing flow 
both in a stationary pipe and in a pipe rotating with angular velocity R. In disagreement with 
experimental data, it was found that assuming zero radial velocity, u=O, at the inflow boundary 
forced the axial velocity distribution to be nearly constant and equal to zero just downstream of 
the inflow section. A much better agreement with experimental results was obtained by replacing 
this condition with that of au/dx=O, where u is updated after each iteration. 

Three different outflow Conditions were tested. Employing in all cases a condition of 
parabolized vorticity transport, the outflow conditions tested were made by assuming fully 
developed axial flow, fully developed radial flow with $ calculated directly from a Taylor 
expansion and fully developed radial flow with II/ determined from the $-m equation. In the text, 
these three conditions are referred to as conditions A, B and C respectively. Imposing at first the 
outflow plane so far downstream that the upstream influence of the outflow conditions was 
negligible in the first part of the pipe, the influence of the imposed outflow conditions was 
estimated by letting them move a certain distance upstream and comparing the obtained velocity 
distributions with the undisturbed ones. From this study the three conditions were found 
approximately to influence the same distance upstream. However, conditions B and C (&/ax =0) 
were everywhere in better agreement with the undisturbed distributions than condition A (u =O). 
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